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Abstract—Multiple agents sporadically exchange data over
a broadcast network according to an event-based protocol to
observe and control a dynamic process. The synthesis problem
of each agent’s state estimator and event generator, which decides
whether information is broadcast or not, is addressed in this pa-
per. In particular, a previously proposed LMI-synthesis procedure
guaranteeing closed-loop stability is extended to incorporate an
H2 performance measure. The improved estimation performance
of the extended design is illustrated in simulations of an inverted
pendulum, which is stabilized by two agents.

I. INTRODUCTION

Present day control systems are mostly implemented on
digital hardware, where the algorithms for sensing, estimation
and control are typically run at a constant, predefined rate.
This has the drawback that computation and communication
resources are used at predetermined time instants, irrespective
of the current state of the system or the information content of
the measured data. In contrast, in event-based communication,
estimation, and control, information is shared only when
needed. This leads to a reduction in communication, ideally
with only small performance losses. An overview on event-
based control and estimation can be found in [1]–[4].

Event-based strategies are therefore especially promising
for systems where communication represents a bottleneck. This
is the case for systems analyzed herein, where multiple sensor-
actuator agents observe and control a dynamic system and
exchange information over a common communication medium,
as shown in Fig. 1. This set-up was proposed and successfully
demonstrated in experiments on an inverted pendulum system
in [5]. The fundamental problem addressed in the following is
how to design each agent’s state estimator and event generator,
such that a given estimation performance is met.

In [6], a procedure for the synthesis of stabilizing observer
gains is presented. In contrast to earlier work, [5], these stabil-
ity guarantees include the case of differences between any two
agents’ estimates, which stem, for example, from imperfect
communication. While the focus in [6] is entirely on closed-
loop stability, no performance criterion is included in the LMI-
design, and the event generators are considered to be fixed.
Herein, we augment the design of [6] by incorporating an H2

performance criterion, and by addressing both, the design of
the state estimator and the event generator. The proposed LMI-
based synthesis for event-based estimation is flexible: emphasis
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Figure 1. Block diagram of the distributed event-based estimation and control
architecture considered in this paper (here with two agents). Each agent has
access to measurements yi and can thus observe a part of the system’s state
x. Based on the agent’s state estimate and the local measurement yi the event
generator (EG) decides whether the measurement is communicated over the
common bus network. The controller uses the local state estimate to compute
the input ui for the local actuator.

in the design can be placed on estimation performance or on
the reduction of communication, for example.

Related work: In [5], [7] the event generator is designed
such that a centralized control and observer design can be
applied to the distributed architecture. The main advantage of
this approach is its simplicity since well-known centralized
control design tools can be used to design the control and
observer gains. However, in contrast to the synthesis procedure
presented herein, the control design in [5], [7] does not
explicitly account for the distributed structure of the control
system.

Designs for distributed event-based estimation have been
formulated as LMI-optimization in [8]–[10]. The references
consider communication between agents according to a graph
structure, and employ simpler event triggering mechanisms
than the ones used herein. Triggering is based on the difference
of the current measurement (or state) to the last transmitted
one, while we exploit model-based predictions and consider the
difference of the measurement to its prediction (rather than the
last value sent). Moreover, the references exclusively treat the
estimation problem, while we simultaneously address stability
and performance of the distributed event-based control system
that results when local estimates are used for feedback control.
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Outline of the paper: The distributed event-based estima-
tion framework and the LMI-design from [6] are summarized
in Sec. II. The augmented synthesis procedure, accounting
for an H2 performance criterion is discussed in Sec. III. It
is evaluated subsequently on a simulation example in Sec.
IV, where different designs are compared, and the trade-off
between communication and performance is discussed. The
paper concludes with remarks in Sec. V.

II. PROBLEM FORMULATION

The problem setting is similar to [5]–[7]. We consider the
discrete-time linear system

x(k) = Ax(k−1) +Bu(k−1) + v(k−1) (1)
y(k) = Cx(k) + w(k) (2)

with time index k, state x(k) ∈ Rn, control input u(k) ∈ Rq ,
measurement y(k) ∈ Rp, disturbances v(k) ∈ Rn, w(k) ∈ Rp,
and all matrices of corresponding dimensions; (A,B) and
(A,C) are assumed to be stabilizable and detectable. We
assume that there are N sensor-actuator agents, each of them
measuring a portion of the input and output. Decomposing the
input vector u and output vector y accordingly leads to

B u(k−1) = [B1 B2 . . . BN ]


u1(k)
u2(k)

...
uN (k)

 (3)

y(k) =


y1(k)
y2(k)

...
yN (k)

 =


C1

C2...
CN

x(k) +


w1(k)
w2(k)

...
wN (k)

 , (4)

where ui(k) ∈ Rqi is agent i’s input and yi(k) ∈ Rpi its
measurement. Note that local stabilizability or detectability
is not required, hence (A,Bi) may be not stabilizable and
(A,Ci) may be not detectable. We assume further that the
disturbances v(k) and wi(k), i = 1, 2, . . . , N , are zero mean,
independent and identically distributed for all k and have
covariances V and Wi respectively. For guaranteeing input-
to-state stability in the sense of [6], v(k) and wi(k) need
additionally to be bounded, hence they could be for example
uniformly distributed or be modeled by truncated Gaussian
distributions.

A. Distributed State Estimation and Communication
The agents communicate sensor data yi(k) over a broadcast

network. If one agent communicates, all other agents will
receive the data. Unlike [5] and [7], the agents do not share
their input data ui(k) with each other. Agents are assumed
to be synchronized in time, and network communication is
assumed to be instantaneous and without delay.

The following rule is used for deciding whether agent i
should broadcast its local measurement yi(k) or not:

transmit yi(k) ⇔ ||∆−1
i (yi(k)− Cix̂i(k|k−1))||2 ≥ 1, (5)

where ∆i ∈ Rpi×pi is symmetric, positive definite (∆i > 0),
x̂i(k|k− 1) is agent i’s belief of the state x(k) based on
measurements until time k−1 (which is made precise below),
|| · ||2 denotes the vector 2-norm, and Cix̂i(k|k−1) is agent
i’s prediction of its measurement yi(k). Note that the transmit

rule used herein is a slight generalization of the one in [6],
where ∆i was restricted to be of the form δiI , with δi ∈ R
and I ∈ Rpi×pi the identity matrix. Nonetheless the results
from [6] hold likewise for the more general transmit decision
given by (5). The decision rule used herein can be motivated
by the potentially non-homogeneous information content of the
elements of yi, as well as different physical units. In addition,
the ∆i will enter the design process as decision variables.

At each time instant k, the index set of measurements
transmitted is denoted by

I(k) := {i | 1 ≤ i ≤ N, ||∆−1
i (yi(k)−Cix̂i(k|k−1))||2 ≥ 1}.

(6)
Agent i’s state estimate is given by the following recursive
update rule:

x̂i(k|k−1) = Ax̂i(k−1|k−1) +Bûi(k−1) (7)
x̂i(k|k) = x̂i(k|k−1) (8)

+
∑
j∈I(k)

Lj
(
yj(k)− Cj x̂i(k|k−1)

)
+ di(k),

where ûi(k−1) ∈ Rq denotes agent i’s belief of the input
vector u(k−1), Lj are observer gains to be designed, and di(k)
represents a disturbance, which is assumed to be bounded. The
disturbance di has been introduced in [7] to model mismatches
between the estimates of the individual agents, which may
originate from, for example, unequal initialization, different
computation accuracy, or imperfect communication.

B. Distributed Control

It is assumed that a state-feedback controller F ∈ Rq×n is
given such that A + BF is asymptotically stable (magnitude
of all eigenvalues strictly less than one). The control ui(k) on
agent i is computed as

ui(k) = Fix̂i(k) (9)

where FT = (FT
1 , F

T
2 , . . . , F

T
N ) is the decomposition of the

state feedback gain F . Each agent uses the estimate

ûi(k) = Fx̂i(k|k) (10)

of u(k) to update his state estimate according to (7).

C. Closed-Loop System

In [6], conditions guaranteeing the stability of the closed-
loop dynamics, which result from (1), (2), (5), (7), (8), (9),
and (10) were derived. These conditions are summarized with
the following theorem:

Theorem 2.1: (From [6]) Let the matrix inequalities

AT
cl (Πi)PAcl(Πi)− P < 0 and

((I − LC)A)TQ(I − LC)A−Q < 0

with

Acl(Πi) := (I −
∑
m∈Πi

LmCm)(A+BF ) and

L := (L1, L2, . . . , LN )T

be fulfilled for positive definite matrices P ∈ Rn×n, Q ∈
Rn×n, P > 0, Q > 0, and for all permutations Πi ∈ Π, where



Π is defined as the set of all permutations of {1, 2, . . . , N}.1
Then, the closed-loop dynamics are input-to-state stable.

Input-to-state stability, as introduced in [11], implies that
the state trajectory remains bounded provided that bounded
inputs are applied to the system and can be viewed as an
extension of Lyapunov stability to systems with inputs. If
suitable matrices P and Q are found, Theorem 2.1 guarantees
stability of the closed-loop system under all possible switching
sequences, which are represented by the permutations Π.
Therefore, the result is also independent of the communication
thresholds ∆i.

Using the restriction P = Q, which is needed to obtain a
linear dependence on the decision variables (as will become
clear in the following), and applying the Schur complement,
[12, p.650], the following linear matrix inequalities (LMIs)
ensuring closed loop stability are obtained:(

P PAcl(Πi)
Acl(Πi)TP P

)
> 0 (11)

for all permutations Πi ∈ Π, and(
P P (I − LC)A

AT(I − LC)TP P

)
> 0. (12)

The LMIs (11), (12) are used in [6] to design stabilizing
observer gains Li. Whether the resulting semidefinite program
is feasible, depends on the problem parameters. In this paper,
the LMI design is augmented to express performance criteria in
addition to the closed-loop stability requirement. To simplify
the following discussion, we make the following assumption:

Assumption 1: There exists L and P such that (11) and
(12) are satisfied.

If this assumption is violated for a specific problem, a
modified procedure was introduced in [6], which uses a reset
strategy for the agents’ estimates to still guarantee input-to-
state stability at the price of additional inter-agent communi-
cation. The derivations presented in the remainder can also be
used to augment the LMI design in case Assumption 1 is not
satisfied, since the modified communication protocol from [6]
can be applied accordingly.

D. Objective

The objective of this paper is to design the observer gains
Li and communication thresholds ∆i, such that the resulting
closed-loop system, given by (1), (2), (5), (7), (8), (9), (10),
is input-to-state stable for bounded disturbances v, wi, di, and
such that a certain H2 performance is achieved. While stability
was extensively discussed in [6], this article focuses on the
aspects related to the closed-loop performance. We propose to
divide the synthesis procedure into two steps. By considering
the full communication case in the first step, a lower bound on
the achievableH2 cost can be minimized, yielding the observer
gains Li. In a second step, the communication thresholds ∆i

are chosen such that the given performance requirements are
met. By doing so, communication can be systematically traded
off for performance. In contrast to the joint optimization of the

1A permutation is defined as the drawing of zero up to N elements from
{1, 2, . . . , N} without repetition and without considering the order. Therefore
Π contains the empty set and has cardinality 2N .

Li’s and ∆i’s, the two step procedure yields convex problems,
thus allowing for an efficient solution.

III. AUGMENTED LMI-SYNTHESIS

In this section, we derive a general H2 performance
measure, which can be used, for example, to express the
objectives of minimizing the estimation error or minimizing
communication rates. The performance measure will be used
to augment the LMIs (11) and (12), responsible for ensuring
stability of the distributed event-based control system.

To that extent, we first reformulate the agent error dynamics
in Sec. III-A to simplify the subsequent analysis. We introduce
the general H2 performance measure in Sec. III-B and high-
light two particular instances, which allow to reduce the esti-
mation error or the average communication. In Sec. III-C, the
synthesis procedure guaranteeing a worst caseH2 performance
is presented.

A. Agent Error Dynamics

The time evolution of agent i’s estimation error is given
by the combination of (1), (7), (8), (9), and (10),

ei(k) = Aei(k − 1) +

N∑
j=1

BjFjεji(k − 1)

−
∑
j∈I(k)

Lj(yj(k)− Cj x̂i(k|k − 1))− di(k) + v(k − 1),

where the agent error (of agent i) is defined as ei(k) :=
x(k)− x̂i(k|k) and the inter-agent error (between agent i and
j) as εji(k) := x̂j(k|k) − x̂i(k|k). Hence, in the absence of
disturbances, di(k) = 0, and assuming zero inter-agent error
at time k = 0, it follows that x̂i(k|k − 1) = x̂j(k|k − 1) and
ei(k) = ej(k) for all k > 0.

For deriving the performance criterion, we consider the
simplified dynamics without disturbances di and with identical
estimates in the interest of a tractable design. The proposed
performance measure can be extended to incorporate nonzero
disturbances di and a nonzero inter-agent error, e.g. by using
worst-case upper bounds as provided in [6, proof of Lemma
3.1]. By augmenting the final optimization problems with
the conditions (11) and (12), closed-loop stability can be
guaranteed even when the agents’ state estimates differ and
the disturbances di are nonzero. Under these assumptions, the
agent error dynamics can be rewritten as (see [6, equation (15)]
with di(k) = 0, x̂i(k|k) = x̂j(k|k),∀i, j, k)

ei(k) = (I − LC)Aei(k − 1) + (I − LC)v(k − 1)−
N∑
j=1

Ljwj(k) + ξ(k),
(13)

where ξ(k) is given by

ξ(k) =
∑
j∈Ī(k)

Lj(yj(k)− Cj x̂j(k|k − 1)). (14)

The index set of measurements which are not transmitted is
denoted by Ī(k), hence

Ī(k) := {i | 1 ≤ i ≤ N, ||∆−1
i (yi(k)−Cix̂i(k|k−1))||2 < 1}.

(15)
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Figure 2. Block diagram of the agent error dynamics. The error ei is driven
by the external disturbances v and w. The switches and the signals qi and s1i
are used to model the event-based communication. Based on the magnitude
of the signal qi(k) at time instant k, the i’th switch is either closed (no
communication in case ||qi(k)||2 < 1) implying qi(k) = s1i(k) or opened
(communication in case ||qi(k)||2 ≥ 1) implying s1i(k) := 0.

The communication protocol guarantees by construction that
||∆−1

j (yj(k) − Cj x̂j(k|k − 1))||2 is less than one for all j ∈
Ī(k), and therefore ξ(k) can be rewritten as

ξ(k) =

N∑
j=1

Lj∆js1j(k), (16)

with ||s1j(k)||2 < 1 and s1j(k) := 0 if j 6∈ Ī(k). In other
words, s1j(k) is given by

s1j(k) := 1j∈Ī(k) qj(k), (17)

qj(k) : = ∆−1
j (yj(k)− Cj x̂j(k|k − 1)), (18)

where 1j∈Ī(k) denotes the indicator function; that is, the
function is 1 if and only if the statement in the subscript is true
and zero otherwise. The agent-error dynamics can therefore be
illustrated by the block diagram as shown in Fig. 2: in case
that there is no communication of a specific measurement yj ,
the j’th switch is closed and the error signal qj is fed back.
In case that the communication is triggered, the j’th switch
remains open, resulting in s1j(k) = 0.

By normalizing the exogenous inputs v and w,

s2j := W
− 1

2
j wj , s3 := V −

1
2 v, (19)

s1 := (s11, . . . , s1N )T, s2 := (s21, . . . , s2N )T (20)

the agent error dynamics (13) can be rewritten as

ei(k) = Âei(k−1)+B̂1s1(k)+B̂2s2(k)+B̂3s3(k−1), (21)

with

Â = (I − LC)A, B̂1 = (L1∆1, . . . , LN∆N )

B̂2 = (L1W
1
2

1 , . . . , LNW
1
2

N ), B̂3 = (I − LC)V
1
2 .

B. H2 Performance Measure

We choose

z(k) = Ĉei(k − 1) + D̂2s2(k) + D̂3s3(k − 1), (22)

k = 1, 2, . . . , as virtual output and use the power semi-norm,

J = lim
n→∞

√√√√ 1

n

n∑
k=1

z(k)Tz(k) =: ||z||P (23)

as performance measure, [13, p.103] (provides a continuous
time definition; the discrete-time case is analogous). Note that
in discrete time, the H2 norm is well-defined even for systems
with direct feed-through.

In case ei was stationary and ergodic, (23) would be
equivalent to the expected standard deviation of the output z,
[14, p.224]. However, due to the communication protocol and
resulting nonlinear feedback (see Fig. 2), ei is not guaranteed
to be stationary. The cost (23) is well-defined, since the agent
error remains bounded for bounded disturbances v, wj . In
addition, (22) offers flexibility in the choice of Ĉ, D̂2, and
D̂3. Two particular choices are highlighted next:
1) Choosing Ĉ = I , D̂2 = 0, D̂3 = 0 uses directly the
power of the agent estimation error as performance criterion
and corresponds to a steady-state Kalman filter design.
2) Note that qj(k) given by equation (18) can be rewritten as

qj(k) = ∆−1
j

(
CjAej(k − 1) +W

1
2
j s2j(k)

+CjV
1
2 s3(k − 1)

)
,

(24)

since all agents’ state estimates are assumed to be equal for
establishing the performance measure. Hence, by choosing

ĈT = ((∆−1
1 C1A)T, . . . , (∆−1

N CNA)T), (25)

D̂2 = diag
(

∆−1
1 W

1
2

1 , . . . ,∆
−1
N W

1
2

N

)
, and (26)

D̂T
3 = ((∆−1

1 C1V
1
2 )T, . . . , (∆−1

N CNV
1
2 )T) (27)

we have that z = q enabling the direct minimization of the
power of q. The signal q is directly related to the communi-
cation, since a communication is triggered if ||qj ||2 ≥ 1.

Thus, design 1) seeks to optimize estimation performance,
whereas design 2) aims at reducing communication.

C. Synthesis

Minimizing (23) directly is difficult, due to the nonlinear
feedback of the qj’s (see Fig. 2), leading in particular to
a correlation of the distrubances v and w with the s1j’s.
Moreover, the estimation error ei is not stationary, which
makes it difficult to use a probabilistic characterization of
||z||P .

Therefore, the following alternative approach is proposed:
We minimize first (23) with respect to the observer gains Li
for the full communication case, where all agents communicate
at every step (i.e. s1 = 0). Note that if the communication is
reduced, the agents have less information leading to a poten-
tial performance degradation. Hence, the full communication
scenario yields a lower bound on the achievable cost (23). In
a second step, the fact that ||s1j ||2 < 1 for all j’s is exploited,
enabling the derivation of an upper bound on the cost (23).
Thus, the communication thresholds ∆i are designed to reduce
the communication, while at the same time guaranteeing a
worst case performance in terms of (23). The estimator gains



Li are fixed during the synthesis of the ∆i in order to obtain
a convex problem.

An upper bound to (23) can be obtained by applying the
triangle inequality (recall that || · ||P is a semi-norm):

J ≤ ||g1 ∗ s1||P + ||g2 ∗ s2 + g3 ∗ s3||P , (28)

where ∗ denotes the convolution operator, g1, g2, and g3 the
impulse responses from s1, s2, and s3 to z. The first term can
be upper bounded by

||g1 ∗ s1||P ≤ ||G1||∞||s1||P ≤
√
N ||G1||∞, (29)

where G1 is the Z-transform of g1, and ||G1||∞ denotes the
H∞ norm of G1, see e.g. [13, p.107] (provides a continuous
time derivation; the discrete-time case is analogous). Note that
||s1||P ≤

√
N since all the s1j’s have magnitude less than

one.

The inputs s2 and s3 are independent, identically dis-
tributed, and have unit variance; and therefore ||g2 ∗ s2 + g3 ∗
s3||P can be expressed by

||g2 ∗ s2 + g3 ∗ s3||P = ||G2||2 + ||G3||2, (30)

where G2, G3 denote the Z-transforms of g2 and g3, respec-
tively and ||G||2 the H2 norm of the transfer function G, [13,
p.107]. Hence, the following upper bound on the performance
measure J is obtained,

J ≤
√
N ||G1||∞ + ||G2||2 + ||G3||2. (31)

For the limit ∆j → 0, the full communication scenario is
recovered, since in that case ||G1||∞ vanishes (note the linear
dependence of B̂1 on the ∆i), and J = ||G2||2 + ||G3||2.

Summarizing, the following procedure for designing the
observer gains Li together with the communication thresholds
∆i, i = 1, . . . , N , is proposed:
1) Design the observer gains Li, which minimize ||G2||2 +
||G3||2, subject to the constraints (11) and (12) ensuring
closed-loop stability. The communication thresholds ∆i are
kept fixed.
2) Choose the communication thresholds ∆i as large as
possible, i.e. maximize for instance the trace of the ∆i’s, but
such that

√
N ||G1||∞ + ||G2||2 + ||G3||2 < Jmax, where Jmax

is a predefined upper bound on the closed-loop performance.
Keep the observer gains Li fixed.

Step 1) represents a nominal control design, based on the
full communication scenario. The H2 norm ||G2||2 + ||G3||2
is a lower bound on J . Step 2) provides a means for choosing
the communication thresholds ∆i, such that the desired per-
formance Jmax is guaranteed. Clearly, the desired performance
Jmax must be larger than ||G2||2 + ||G3||2.

Both optimization problems can be formulated as semidefi-
nite programs and are therefore efficiently solvable using stan-
dard software packages. In particular, it holds that (||G2||2 +
||G3||2)2 < tr(H), where H ∈ R(n+p)×(n+p) is symmetric
positive definite, if and only if there exists a positive definite
matrix P such that I 0 Ĉ

0 P PÂ

ĈT ÂTP P

 > 0,

 I 0 D̂23

0 P PB̂23

D̂T
23 B̂T

23P H

 > 0,

(32)

with B̂23 = (B̂2, B̂3) and D̂23 = (D̂2, D̂3), see Appendix.
Note that tr(H) refers to the trace of the matrix H . By adding
equation (32) to the conditions (11) and (12), the following
semidefinite program is obtained for step 1):

min tr(H) subject to (11), (12), and (32). (33)

Note that the linear matrix inequalities (11), (12), and (32)
are linear in the optimization variables P , Yi := PLi, and H ,
provided that the ∆i’s are fixed.

Similarly, for the H∞ norm of G1, it holds that ||G1||2∞ <
γ1 if and only if there exists a positive definite matrix P such
that 

P ÂP B̂1 0

PÂT P 0 PĈT

B̂T
1 0 I 0

0 ĈP 0 γ1I

 > 0, (34)

see e.g. [15]. Equation (34) is linear in the ∆i’s (through B̂1),
which allows to formulate the optimization problem in step 2)
as

max

N∑
i=1

tr(∆i) subject to

(34) and γ1 <
1

N
(Jmax − ||G2||2 − ||G3||2)2.

(35)

Note that, when solving (35), ||G2||2 as well as ||G3||2 are
kept fixed. The motivation for maximizing the trace of the
∆i is given by the observation that the qi, which trigger the
communication, are directly proportional to the inverse of the
∆i, see (24). Alternatively one could maximize the minimum
eigenvalues of the ∆i, which would likewise result in a
semidefinite program, or introduce a weighting in the objective
function of the optimization problem (35). A weighting of the
different communication thresholds could be interesting for
applications where the communication costs differ among the
agents.

Feasibility of (33) and (35)
Note that the first condition of (32) is equivalent to ÂTPÂ−
P + ĈTĈ < 0 (Schur complement, [12, p.650]). Condition
(12) implies that ÂTPÂ − P < 0 and therefore, by scaling
P , the first inequality of (32) can always be satisfied, given
that Assumption 1 holds. The second inequality of (32) is
equivalent to B̂T

23PB̂23 + D̂T
23D̂23−H < 0, which is likewise

fulfilled by choosing the minimum eigenvalue of H large
enough. This implies that under Assumption 1, (33) is always
solvable.

The solvability of (35) follows trivially by noting the
communication thresholds ∆i can be chosen to be zero.

IV. SIMULATION EXAMPLE

In this section, we present a simulation example to illustrate
the proposed optimization framework for designing the event-
based state estimators, namely the estimator gains Li, and the
triggering thresholds ∆i. For the simulations, we use the same
inverted pendulum example as in [6] and [7]. It is based on
the Balancing Cube [16], which was used as the physical test
bed for the experiments in [5].



ϕ2

ϕ1

θ

Figure 3. Inverted pendulum model: The pendulum is stabilized by the
relative motion of its two arms.

A. Model

Consider the inverted pendulum system depicted in Fig. 3,
where ϕ1 and ϕ2 parametrize the inclination of the first and
second arm, and θ the inclination of the inverted pendulum.
Choosing xT = (θ, θ̇, ϕ1, ϕ̇1, ϕ2, ϕ̇2), the dynamics are given
by

x(k) = Ax(k − 1) +Bu(k − 1) + v(k − 1) (36)

with

A =


1.0007 0.0100 −0.0001 −0.0005 −0.0001 −0.0012
0.1492 1.0007 −0.0151 −0.0462 −0.0151 −0.1231

0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 , B =


0.0005 0.0012
0.0461 0.1230
0.0100 0

1 0
0 0.0100
0 1

.

The input vector is divided according to u = (u1, u2)T,
with u1 the desired angular velocity of the upper arm
u1 = ϕ̇1des , and u2 the desired angular velocity of the lower
arm u2 = ϕ̇2des , see [6] and references therein for the modeling.
The process noise is assumed to originate mainly from the
uncertainties in the actuation and is therefore chosen as

v(k − 1) = B (nu1(k − 1), nu2(k − 1))T, (37)

where nu1 and nu2 are independent stochastic processes,
which are uniformly distributed over [−3.0

◦
/s, 3.0

◦
/s].

The lower control unit in Fig. 3 is called agent 1, and
the upper one agent 2. Agent 1 has access to the noisy
measurements ϕ1+nϕ1 , ϕ̇1+nϕ̇1 , and θ̇+nθ̇ and computes u1.
Agent 2 has access to the noisy measurements ϕ2 + nϕ2 , and
ϕ̇2 + nϕ̇2 . The noise signals nϕ1 , nϕ̇1 , nθ̇, nϕ2 , and nϕ̇2 are
assumed to be independent, uniformly distributed with zero
mean and variances σ2

ϕi
= (0.05 ◦)2, σ2

ϕ̇i
= (0.1

◦
/s)2, and

σ2
θ̇

= (0.24
◦
/s)2, i = 1, 2.

The system is controllable and observable, but neither
controllable nor observable for each agent on its own. A
stabilizing state feedback controller F is found via an LQ
regulator approach, yielding

F =

(
212.5872 55.0168 −19.3450 −2.5374 −23.5728 −6.7664
−84.9883 −22.0881 6.4894 1.0187 6.3579 2.7166

)
.

B. Design 1: z(k) = ei(k)

The designs 1) and 2) as introduced in Sec. III-B are
compared on the simulation example. First, we choose z(k) =
ei(k), in analogy to a steady-state Kalman filter. Note however,
that (11) and (12) are imposed to account for the distributed
architecture of the control system. The obtained observer
design is therefore fundamentally different from a centralized
steady-state Kalman filter.
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Figure 4. Top: time history of pendulum inclination angle θ(k) using a
sampling time of 1 ms. Middle: 2-norm of agent 1’s estimation error (after
smoothing with a 200-sample moving average filter). Bottom: estimation of
the communication R1 of agent 1 (solid) and R2 of agent 2 (dashed) via a
200-sample moving average filter.

Due to the particular choice of z(k) = ei(k), the opti-
mization problem (33) is independent of the communication
thresholds ∆i. Thus, (33) is solved first yielding the observer
gains Li, as well as the H2 gain ||G2||2 + ||G3||2. In a second
step, (35) is solved to design the communication thresholds
∆i, while keeping the Li’s fixed.

Solving (33) yields ||G2||2 + ||G3||2 = 3.96 · 10−3. To
reduce communication, a comparably high maximum cost
of Jmax = 0.1 is tolerated. The resulting distributed state
estimation is evaluated in simulations of the inverted pendulum
model.

Disturbance Rejection Properties
In a first experiment, the simulation is started with ini-
tial conditions x(0) = (1 ◦, 0, 0.1 ◦, 0,−0.1 ◦, 0)T, x̂1(0) =
(0, 0, 0.1 ◦, 0, 0, 0)T, and x̂2(0) = (0, 0, 0, 0,−0.1 ◦, 0)T.
Hence, each agent knows its own inclination angle, but not
the pendulum inclination angle. A packet drop is assumed to
occur with a probability of 2%, i.e. every 50th measurement is
lost on average. The resulting time histories of the pendulum
inclination angle, the estimation error of agent 1, and the
communication are depicted in Fig. 4. The communication
rates R1 and R2 are normalized such that 1 corresponds to an
agent communicating at every time instant.



Table I. COMMUNICATION RATES AND RESULTING H2 COST.

R ||ei||P ||q||P
Design 1) 32.91% 0.0265 1.256
Design 2) 7.33% 0.0516 0.694
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Figure 5. Total communication versus estimation performance. The total
communication R is normalized such that 1 corresponds to both agents
communicating at every time instant.

Steady-State Performance
In a second experiment, the steady state communication rate
and the performance ||z||P is estimated. To that extent, the
pendulum is initialized in upright position at rest, and the
communication and performance is evaluated using averaging
over 150 s.2 The results can be found in Tab. I. Note that the
obtained performance is well below the bound Jmax, which
is mainly due to the conservative worst case bound given by
equation (29), since in practice ||s1||P �

√
N .

Influence of Jmax
Additionally, the influence of Jmax is studied by gradually
increasing its value from 1.0 ·10−2 to 2.0 ·10−1. The resulting
steady-state communication rate and performance ||z||P is
shown in Fig. 5. Initially, a rapid decrease in communication,
together with slight performance loss can be observed. As
Jmax is increased further, ||z||P increases linearly, whereas the
communication rate flattens out.

C. Design 2: z(k) = q(k)

As an alternative design, we choose z(k) = q(k) to penal-
ize the communication directly. In this case, the optimization
problem (33) is dependent on both, the Li and the ∆i, see (24).
We therefore propose to solve the optimization problems (33)
and (35) in an alternating manner, always keeping either the
Li or the ∆i fixed. Initially, ∆1 = ∆2 = 0.01I is chosen. The
optimization problem (33) is solved to obtain the Li, while
keeping the ∆i fixed, yielding ||G2||2 + ||G3||2 = 0.465. Then
(35) is solved with Jmax = 120 to update the ∆i, while keeping
the Li fixed, before repeating the procedure a second time.3
To estimate the steady-state communication and performance
||z||P , the simulated trajectories (with zero initial conditions)
are again averaged over 150 s. In comparison to design 1, the
average communication is significantly lower at the expense
of increased estimation error, see Tab. I.

2The results were found to change insignificantly (below 2%) when increas-
ing the time horizon.

3Repeating the procedure another time did, however, not improve the design;
thus, we stopped after two iterations.

V. CONCLUSION

This paper extends the framework presented in [6] by
augmenting the design of the distributed event-based state
estimators with a performance measure. The proposed ap-
proach is flexible and encompasses different objectives such
as minimizing the estimation error or the communication. In
addition to providing a synthesis procedure for the observer
feedback gains, a systematic approach for the design of the
communication thresholds is presented. The algorithms are
evaluated using a simulation example. In particular, the closed-
loop performance resulting from two different performance
measures is illustrated, and the trade-off between performance
and communication is highlighted.

It is shown that the communication can be drastically
reduced by choosing z = q and optimizing for the Li and
∆i in an alternating manner, see Sec. IV-C. Future work will
aim at a better understanding of this alternating optimization
procedure with respect to numerical stability and convergence.

APPENDIX

In the following, the conditions (32) are derived, which
express the H2 norm objective as LMIs. The results are well-
known in the literature, [15], [17], but the authors were not
able to find a formulation identical to (32).

Expressing the H2 norm objective as LMIs
Consider the discrete-time system

x(k) = Ax(k − 1) +Bw(k), x(0) = 0,

y(k) = Cx(k − 1) +Dw(k),
(38)

with state x, exogenous input w and output y. We assume that
A is asymptotically stable and that w(k) has zero mean, unit
variance, and is independent and identically distributed for all
k = 1, 2, . . . . Thus, the power semi-norm of the output, ||y||P ,
is well defined and equivalent to the H2 gain of the transfer
function G from w to y (see [13, p.107]).

The following well-known theorem will be used:

Theorem A.1: (Lyapunov, see e.g. [13, p.527]) Given any
Q > 0, there exists a unique X > 0 satisfying ATXA−X +
Q = 0 if and only if A is asymptotically stable. The solution
X is given by

X = lim
N→∞

N−1∑
k=0

(AT)kQAk.

First, we will reformulate the output power using the
observability Gramian. The observability Gramian is defined
as

Xo := lim
N→∞

N−1∑
k=0

(AT)kCTCAk, (39)

and is therefore, according to Theorem A.1, the solution to

ATXoA−Xo + CTC = 0. (40)



The output power is well-defined, since A is asymptotically
stable, and given by

||y||2P = lim
N→∞

1

N

N∑
k=1

y(k)Ty(k)

= lim
N→∞

1

N

N∑
k=1

tr(y(k)y(k)T)

=

[
lim
N→∞

N−1∑
k=0

tr(CAkBBT(AT)kCT)

]
+ tr(DDT),

where the statistical properties of w(k) have been exploited in
the last step. Thus, it follows that

||y||2P = tr(BT

{
lim
N→∞

N−1∑
k=0

(AT)kCTCAk

}
B) + tr(DDT)

= tr(BTXoB) + tr(DTD)

= tr(BTXoB +DTD).

Theorem A.2: It holds that

||y||2P = tr(BTXoB +DTD) < γ,

where Xo is the observability Gramian, if and only if there
exists a symmetric, positive definite matrix X such that

tr(BTXB +DTD) < γ and ATXA−X + CTC < 0.

Proof: (Sketch) (⇒)

||y||2P = tr(BTXoB +DTD) < γ

implies that there exists an ε small enough such that

tr(BTXB +DTD) < γ

with

X : = Xo + ε2 lim
N→∞

N−1∑
k=0

(AT)kAk

= lim
N→∞

N−1∑
k=0

(AT)k(CTC + ε2I)Ak.

Theorem A.1 implies that ATXA−X +CTC + ε2I = 0 and
therefore ATXA−X + CTC < 0.

(⇐) From ATXA − X + CTC < 0 it follows that there
exists a Q = QT > 0 such that ATXA−X+CTC+Q = 0. By
definition of the observability Gramian, CTC = −ATXoA+
Xo and we have that AT(X − Xo)A − (X − Xo) + Q =
0. According to Theorem A.1 the solution of this Lyapunov
equation is given by X−Xo = limN→∞

∑N−1
k=0 (AT)kQAk >

0. Therefore X = Xo + limN→∞
∑N−1
k=0 (AT)kQAk, which

implies that

||y||2P = tr(BTXoB +DTD) ≤ tr(BTXB +DTD) < γ.

The previous theorem can be used to express the H2 norm of
the system as a set of LMI conditions, that is

||y||2P < γ ⇔ tr(H) < γ, H = HT > 0,

BTXB +DTD −H < 0,

ATXA−X + CTC < 0.

Applying the Schur complement (twice) to BTXB+DTD−
H < 0 results in(

X XB
BTX H −DTD

)
> 0⇔

(
I 0 D
0 X XB
DT BTX H

)
> 0.

Similarly, the matrix inequality ATXA−X + CCT < 0 can
be reformulated as(

X XA
ATX X − CTC

)
> 0⇔

(
I 0 C
0 X XA
CT ATX X

)
> 0,

which establishes the conditions (32).
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[3] L. Grüne, S. Hirche et al., “Event-based control,” in Control Theory of
Digitally Networked Dynamic Systems. Springer, 2014, pp. 169–261.

[4] C. G. Cassandras, “The event-driven paradigm for control, communica-
tion and optimization,” Journal of Control and Decision, vol. 1, no. 1,
pp. 3–17, 2014.

[5] S. Trimpe, “Event-based state estimation with switching static-gain
observers,” in Proc. of the 3rd IFAC Workshop on Distributed Estimation
and Control in Networked Systems, 2012.

[6] M. Muehlebach and S. Trimpe, “LMI-based synthesis for distributed
event-based state estimation,” in Proc. of the American Control Con-
ference, 2015.

[7] S. Trimpe, “Stability analysis of distributed event-based state estima-
tion,” in Proc. of the IEEE 53rd Annual Conference on Decision and
Control, Dec 2014, pp. 2013–2019.

[8] C. Fischione, D. Dimarogonas, F. Rubio, K. Johansson, P. Millan,
and U. Tiberi, “Distributed event-based observers for LTI networked
systems,” in Portuguese Conference on Automatic Control, 2012.

[9] L. Yan, X. Zhang, Z. Zhang, and Y. Yang, “Distributed state estimation
in sensor networks with event-triggered communication,” Nonlinear
Dynamics, vol. 76, pp. 169–181, 2014.

[10] X.-M. Zhang and Q.-L. Han, “Event-based H∞ filtering for sampled-
data systems,” Automatica, vol. 51, pp. 55–69, 2015.

[11] E. Sontag, “Input to state stability: Basic concepts and results,” in
Nonlinear and optimal control theory. Springer, 2008, pp. 163–220.

[12] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2009.

[13] K. Zhou, J. Doyle, K. Glover et al., Robust and optimal control.
Prentice Hall New Jersey, 1996.

[14] P. Prandoni and M. Vetterli, Signal processing for communications.
CRC Press, 2008.

[15] M. C. De Oliveira, J. C. Geromel, and J. Bernussou, “Extended H2 and
H∞ norm characterizations and controller parametrizations for discrete-
time systems,” International Journal of Control, vol. 75, no. 9, pp.
666–679, 2002.

[16] S. Trimpe and R. D’Andrea, “The balancing cube: A dynamic sculpture
as test bed for distributed estimation and control,” IEEE Control Systems
Magazine, vol. 32, no. 6, pp. 48–75, 2012.

[17] G. Dullerud and F. Paganini, A Course in Robust Control Theory.
Springer, 2000.


